Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Adv Healthc Mater ; : e2303289, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640468

RESUMO

Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, we summarize current and potential integration of various modalities to achieve precise, closed-loop modulation and sensing in neural systems. We highlight advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals and utilize them to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, we elaborate on the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality. This article is protected by copyright. All rights reserved.

2.
Phytomedicine ; 128: 155557, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.

3.
Adv Healthc Mater ; : e2303316, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323711

RESUMO

Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.

4.
ACS Nano ; 18(8): 6298-6313, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345574

RESUMO

Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.


Assuntos
Surdez , Glicolatos , Perda Auditiva Provocada por Ruído , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , 60707 , Hidrogéis , Estimulação Acústica/efeitos adversos , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/etiologia , Surdez/complicações , Orelha Média
5.
ACS Nano ; 18(5): 3969-3995, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271679

RESUMO

Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.


Assuntos
Dispositivos Eletrônicos Vestíveis , Próteses e Implantes , Eletrônica , Polímeros/química
6.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922434

RESUMO

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Traumatismos dos Nervos Periféricos , Humanos , Nervo Isquiático , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia , Matriz Extracelular , Regeneração Nervosa/fisiologia
7.
Life Sci ; 339: 122382, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154610

RESUMO

AIMS: Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS: The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS: CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE: The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.


Assuntos
Monoterpenos Acíclicos , Aldeídos , Aterosclerose , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , RNA Circular , Peróxido de Hidrogênio , Aterosclerose/metabolismo , Lipídeos , Apoptose
8.
Pestic Biochem Physiol ; 197: 105678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072535

RESUMO

The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 µM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.


Assuntos
Mariposas , Humanos , Animais , Simulação de Acoplamento Molecular , Ligantes , Mariposas/metabolismo , Odorantes , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
9.
Sci Rep ; 13(1): 22243, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097666

RESUMO

Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase, plays a crucial role as a key enzyme in the final step of glycolysis. It is involved in regulating the tumor microenvironment and accelerating tumor progression. However, the relationship between PKM2 expression and the prognosis and immune infiltration remains unclear in lung cancer. In this study, we analyzed PKM2 expression in pan-cancer, and investigated its association with prognosis and immune cell infiltration of lung cancer by using multiple online databases, including Gent2, Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), PrognoScan, Kaplan-Meier plotter, and The Human Protein Atlas (HPA). The results showed that PKM2 expression is elevated in tumor tissues compared with the adjacent normal tissues of most cancers, including lung cancer. Prognostic analysis indicated that high expression of PKM2 was associated with poorer prognosis in overall lung cancer patients, especially in lung adenocarcinoma (LUAD). Notably, PKM2 exhibited a strong correlation with B cells and CD4+ T cells in LUAD; and with B cells, CD8+ T cells, CD4+ cells, and macrophages in lung squamous cell carcinoma (LUSC). Furthermore, PKM2 expression displayed a significant negative correlation with the expression of immune cell markers in both LUAD and LUSC. These findings suggested that PKM2 could serve as a promising prognostic biomarker for lung cancer and provided insights into its essential role in modulating the immune cell infiltration.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Prognóstico , Piruvato Quinase/genética , Microambiente Tumoral/genética
10.
Adv Healthc Mater ; 12(32): e2301859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750601

RESUMO

Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.


Assuntos
Traumatismos dos Nervos Periféricos , Silício , Humanos , Implantes Absorvíveis , Neurônios , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Gânglios Espinais , Nervo Isquiático/fisiologia , Tecidos Suporte/química
11.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
12.
Adv Healthc Mater ; 12(29): e2302059, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37610041

RESUMO

Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.


Assuntos
Hidrogéis , Rinite Alérgica , Humanos , Hidrogéis/uso terapêutico , Adesivos , Epistaxe , Aderências Teciduais
13.
Ann Hum Genet ; 87(5): 241-247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461830

RESUMO

BACKGROUND: The protein encoded by the cartilage oligomeric matrix protein (COMP) gene is a noncollagenous extracellular matrix (ECM) protein that is important for chondrocyte formation and growth. Variations in the COMP gene cause pseudoachondroplasia (PSACH), which is mainly characterized by short-limbed dwarfing in the clinic. AIMS: To characterize the function of a rare pathogenic variant in the COMP gene (c.875G > A, p.Cys292Tyr). MATERIALS & METHODS: We performed 3D structural analysis, in vitro expression analysis, and immunofluorescence to characterize the effects of the variant on protein structure, expression, and cellular localization respectively. RESULTS: Variation modeling showed that the interactions between amino acids were changed after the variation, and there were 31 changes in the secondary structure of mutant COMP (MT-COMP). Western blot showed that the intracellular quantity of MT-COMP was higher than the wild-type COMP (WT-COMP). Cellular immunofluorescence results showed that WT-COMP was less abundant and homogenously distributed in cells, while the MT-COMP accumulated in the cytoplasm. DISCUSSION: Herein, we report a variant of COMP in a Chinese family with PSACH. We have shown that the rare missense variant, COMP c.875G > A, previously reported in ClinVar and identified in our patient, results in excessive accumulation of mutant protein in the cytoplasm, and is therefore pathogenic. CONCLUSION: Through in silico and experimental analyses, we provide evidence that COMP c.875G > A is the likely cause of PSACH in a Chinese family.


Assuntos
Acondroplasia , Humanos , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patologia , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Mutação
14.
Microbiol Spectr ; 11(3): e0073323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154775

RESUMO

As the α-subunit of the high-affinity receptor for the Fc portion of immunoglobulin E (FcεRIα), FcεRIα plays a central role in IgE-mediated allergic disorders and in the immunity and immunopathology of some parasitic infections. FcεRIα is specifically expressed on basophils and mast cells, but the mechanism that controls FcεRIα expression in these cells is poorly understood. In this study, we found that the natural antisense transcript (NAT) of FcεRIα (FCER1A-AS) is co-expressed with the sense transcript (FCER1A-S) in both interleukin (IL)-3-induced FcεRIα-expressing cells and in the high FcεRIα-expressing cell line MC/9. When FCER1A-AS is selectively knocked down by the CRISPR/RfxCas13d (CasRx) approach in MC/9 cells, the expression of both FCER1A-S mRNA and proteins is markedly decreased. Furthermore, FCER1A-AS deficiency was also found to be associated with a lack of FCER1A-S expression in vivo. Correspondingly, homozygous mice deficient in FCER1A-AS demonstrated a similar phenotype to FCER1A knockout mice in Schistosoma japonicum infection and in IgE-FcεRIα-mediated cutaneous anaphylaxis. Thus, we uncovered a novel pathway for the control of FcεRIα expression by its co-expressed natural antisense transcript. IMPORTANCE FcεRIα is responsible for high-affinity binding with the Fc portion of IgE, which is critical for IgE-dependent disease responses such as allergy responses and anti-parasite immunity. FcεRIα is expressed on a few cell types, including mast cells and basophils. Although the expression of FcεRIα is known to be promoted by the IL-3-GATA-2 pathway during its differentiation, the mechanism by which FcεRIα expression is maintained remains unknown. In this study, we discovered that a natural antisense transcript, FCER1A-AS, is co-expressed with the sense transcript. The presence of FCER1A-AS is essential for sense transcript expression in mast cells and basophils, but not for the differentiation of these cells through cis-regulation. Like FcεRIα knockout mice, mice lacking FCER1A-AS also exhibit reduced survival after Schistosoma japonicum infection and a lack of IgE-mediated cutaneous anaphylaxis. Thus, a novel pathway for regulating IgE-mediated allergic diseases through noncoding RNAs has been revealed.


Assuntos
Anafilaxia , RNA Antissenso , Receptores de IgE , Esquistossomose Japônica , Animais , Camundongos , Imunoglobulina E , Camundongos Knockout , Receptores de IgE/genética , Receptores de IgE/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo
15.
J Transl Med ; 21(1): 302, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147666

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) and cancer stem-like cells (CSLCs) play crucial role in tumor metastasis and drug-resistance. Disheveled3 (DVL3) is involved in malignant behaviors of cancer. However, the role and potential mechanism of DVL3 remain elusive in EMT and CSLCs of colorectal cancer (CRC). METHODS: UALCAN and PrognoScan databases were employed to evaluate DVL3 expression in CRC tissues and its correlation with CRC prognosis, respectively. Transwell, sphere formation and CCK8 assay were used to assess metastasis, stemness and drug sensitivity of CRC cells, respectively. Western blotting and dual luciferase assay were performed to analyze the protein expression and Wnt/ß-catenin activation, respectively. Lentiviral transfection was used to construct the stable cell lines. Animal studies were performed to analyze the effect of silencing DVL3 on tumorigenicity and metastasis of CRC cells in vivo. RESULTS: DVL3 was overexpressed in CRC tissues and several CRC cell lines. DVL3 expression was also higher in CRC tissues with lymph node metastasis than tumor tissues without metastasis, and correlated with poor prognosis of CRC patients. DVL3 positively regulated the abilities of migration, invasion and EMT-like molecular changes in CRC cells. Moreover, DVL3 promoted CSLCs properties and multidrug resistance. We further identified that Wnt/ß-catenin was crucial for DVL3-mediated EMT, stemness and SOX2 expression, while silencing SOX2 inhibited DVL3-mediated EMT and stemness. Furthermore, c-Myc, a direct target gene of Wnt/ß-catenin, was required for SOX2 expression and strengthened EMT and stemness via SOX2 in CRC cells. Finally, knockdown of DVL3 suppressed tumorigenicity and lung metastasis of CRC cells in nude mice. CONCLUSION: DVL3 promoted EMT and CSLCs properties of CRC via Wnt/ß-catenin/c-Myc/SOX2 axis, providing a new strategy for successful CRC treatment.


Assuntos
Neoplasias Colorretais , Proteínas Desgrenhadas , Transição Epitelial-Mesenquimal , Via de Sinalização Wnt , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Humanos , Proteínas Desgrenhadas/genética , Células-Tronco Neoplásicas
16.
Materials (Basel) ; 16(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048878

RESUMO

The thermal deformation behavior of the Mg-Gd-Y-Zr-Ag alloy was studied by isothermal hot compression tests at high temperatures. The flow stress increased with increased strain rates and decreased temperatures, first increasing and finally remaining stable with increased strain. A hot processing map was built. Using the processing map and microstructural analysis, the temperature should remain at 673-773 K for this alloy to ensure the deformation quality. The primary softening mechanism is discontinuous dynamic recrystallization (DDRX). Rising temperatures and declining strain rates facilitated the emergence and growth of Dynamic recrystallization (DRX) grains. An original JC (O-JC) model and a modified JC (M-JC) model were established. The M-JC model indicated a better prediction than the O-JC model. Still, it was deficient in predicting flow stresses with insufficient coupling effects. Hence, based on the M-JC model, a newly modified JC (NM-JC) model, which further enhances the interaction between strain and strain rate as well as strain and temperature, is proposed. Its projected values can better align with the tested values.

17.
ACS Nano ; 17(6): 5727-5739, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897770

RESUMO

Given the advantages of high energy density and easy deployment, biodegradable primary battery systems remain as a promising power source to achieve bioresorbable electronic medicine, eliminating secondary surgeries for device retrieval. However, currently available biobatteries are constrained by operational lifetime, biocompatibility, and biodegradability, limiting potential therapeutic outcomes as temporary implants. Herein, we propose a fully biodegradable primary zinc-molybdenum (Zn-Mo) battery with a prolonged functional lifetime of up to 19 days and desirable energy capacity and output voltage compared with reported primary Zn biobatteries. The Zn-Mo battery system is shown to have excellent biocompatibility and biodegradability and can significantly promote Schwann cell proliferation and the axonal growth of dorsal root ganglia. The biodegradable battery module with 4 Zn-Mo cells in series using gelatin electrolyte accomplishes electrochemical generation of signaling molecules (nitric oxide, NO) that can modulate the behavior of the cellular network, with efficacy comparable with that of conventional power sources. This work sheds light on materials strategies and fabrication schemes to develop high-performance biodegradable primary batteries to achieve a fully bioresorbable electronic platform for innovative medical treatments that could be beneficial for health care.


Assuntos
Fontes de Energia Elétrica , Zinco , Eletrônica , Gelatina , Proliferação de Células , Molibdênio , Óxido Nítrico
18.
Sci Adv ; 9(7): eabq7750, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791200

RESUMO

Bone fractures and defects pose serious health-related issues on patients. For clinical therapeutics, synthetic scaffolds have been actively explored to promote critical-sized bone regeneration, and electrical stimulations are recognized as an effective auxiliary to facilitate the process. Here, we develop a three-dimensional (3D) biomimetic scaffold integrated with thin-film silicon (Si)-based microstructures. This Si-based hybrid scaffold not only provides a 3D hierarchical structure for guiding cell growth but also regulates cell behaviors via photo-induced electrical signals. Remotely controlled by infrared illumination, these Si structures electrically modulate membrane potentials and intracellular calcium dynamics of stem cells and potentiate cell proliferation and differentiation. In a rodent model, the Si-integrated scaffold demonstrates improved osteogenesis under optical stimulations. Such a wirelessly powered optoelectronic scaffold eliminates tethered electrical implants and fully degrades in a biological environment. The Si-based 3D scaffold combines topographical and optoelectronic stimuli for effective biological modulations, offering broad potential for biomedicine.


Assuntos
Biomimética , Tecidos Suporte , Tecidos Suporte/química , Osteogênese , Regeneração Óssea , Diferenciação Celular , Impressão Tridimensional , Engenharia Tecidual
19.
Nat Biomed Eng ; 7(4): 486-498, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36065014

RESUMO

Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.


Assuntos
Nanoestruturas , Silício , Camundongos , Animais , Silício/química , Implantes Absorvíveis , Luz , Nanoestruturas/química , Nervo Isquiático
20.
ACS Appl Mater Interfaces ; 14(46): 52508-52515, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350274

RESUMO

Lead halide perovskite materials have been emerging as promising candidates for high-performance optoelectronic devices. Significant efforts have sought to realize monocrystalline perovskite films on a large scale. Here, we epitaxially grow monocrystalline methylammonium lead tribromide (MAPbBr3) films on lattice-matched gallium arsenide (GaAs) substrates on a centimeter scale. In particular, a solution-processed lead(II) sulfide (PbS) layer provides a lattice-matched and chemical protective interface for the solid-gas reaction to form MAPbBr3 films on GaAs. Structure characterizations identify the crystal orientations in the trilayer MAPbBr3/PbS/GaAs epistructure and confirm the monocrystalline nature of MAPbBr3 on PbS/GaAs. The dynamic evolution of surface morphologies during the growth indicates a two-step epitaxial process. These fundamental understandings and practical growth techniques offer a viable guideline to approach high-quality perovskite films for previously inaccessible applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...